#
#
heapq

###
#
`heapq.heappush(heap, item)`

Push the value `item`

onto the heap, maintaining the heap invariant.

###
#
`heapq.heappop(heap)`

Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty, IndexError is raised. To access the smallest item without popping it, use `heap[0]`

.

###
#
`heapq.heapify(x)`

Transform list `x`

into a heap, in-place, in linear time.

###
#
`heapq.heappushpop(heap, item)`

Push `item`

on the heap, then pop and return the smallest item from the heap. The combined action runs more efficiently than `heappush()`

followed by a separate `heappop()`

.

###
#
`heapq.heapreplace(heap, item)`

Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If the heap is empty, IndexError is raised.

####
#
Source code

```
# Heap queue algorithm (a.k.a. priority queue)
def heappush(heap, item):
"""Push item onto heap, maintaining the heap invariant."""
heap.append(item)
_siftdown(heap, 0, len(heap)-1)
def heappop(heap):
"""Pop the smallest item off the heap, maintaining the heap invariant."""
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
_siftup(heap, 0)
return returnitem
return lastelt
def heapreplace(heap, item):
"""Pop and return the current smallest value, and add the new item.
This is more efficient than heappop() followed by heappush(), and can be
more appropriate when using a fixed-size heap. Note that the value
returned may be larger than item! That constrains reasonable uses of
this routine unless written as part of a conditional replacement:
if item > heap[0]:
item = heapreplace(heap, item)
"""
returnitem = heap[0] # raises appropriate IndexError if heap is empty
heap[0] = item
_siftup(heap, 0)
return returnitem
def heappushpop(heap, item):
"""Fast version of a heappush followed by a heappop."""
if heap and heap[0] < item:
item, heap[0] = heap[0], item
_siftup(heap, 0)
return item
def heapify(x):
"""Transform list into a heap, in-place, in O(len(x)) time."""
n = len(x)
# Transform bottom-up. The largest index there's any point to looking at
# is the largest with a child index in-range, so must have 2*i + 1 < n,
# or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
# j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
# (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
for i in reversed(range(n//2)):
_siftup(x, i)
# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
# is the index of a leaf with a possibly out-of-order value. Restore the
# heap invariant.
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem < parent:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem
def _siftup(heap, pos):
endpos = len(heap)
startpos = pos
newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
childpos = 2*pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
rightpos = childpos + 1
if rightpos < endpos and not heap[childpos] < heap[rightpos]:
childpos = rightpos
# Move the smaller child up.
heap[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap[pos] = newitem
_siftdown(heap, startpos, pos)
```