#
#
math

###
#
`math.pi`

3.141592653589793

###
#
`math.e`

2.718281828459045

###
#
`math.inf`

The `inf`

.

###
#
`math.nan`

The `nan`

.

###
#
`math.ceil(x)`

Return the ceiling of `x`

as a float, the smallest integer value greater than or equal to `x`

.

###
#
`math.fabs(x)`

Return the absolute value of `x`

.

###
#
`math.floor(x)`

Return the floor of `x`

as a float, the largest integer value less than or equal to `x`

.

###
#
`math.fsum(iterable)`

Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple intermediate partial sums:

```
>>> sum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
0.9999999999999999
>>> fsum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
1.0
```

###
#
`math.gcd(a, b)`

Return the greatest common divisor of the integers `a`

and `b`

.

###
#
`math.isfinite(x)`

Return `True`

if `x`

is neither an infinity nor a NaN, and `False`

otherwise.

###
#
`math.isinf(x)`

Return `True`

if `x`

is a positive or negative infinity, and `False`

otherwise.

###
#
`math.isnan(x)`

Return `True`

if `x`

is a NaN (not a number), and `False`

otherwise.

###
#
`math.exp(x)`

Return `e`

raised to the power of `x`

.

###
#
`math.log(x)`

Return the natural logarithm of `x`

(to base `e`

).

###
#
`math.log2(x)`

Return the base-2 logarithm of `x`

. This is usually more accurate than `log(x, 2)`

.

###
#
`math.log10(x)`

Return the base-10 logarithm of `x`

. This is usually more accurate than `log(x, 10)`

.

###
#
`math.pow(x, y)`

Return `x`

raised to the power `y`

.

###
#
`math.sqrt(x)`

Return the square root of `x`

.

###
#
`math.acos(x)`

Return the arc cosine of `x`

, in radians.

###
#
`math.asin(x)`

Return the arc sine of `x`

, in radians.

###
#
`math.atan(x)`

Return the arc tangent of `x`

, in radians.

###
#
`math.atan2(y, x)`

Return `atan(y / x)`

, in radians. The result is between `-pi`

and `pi`

. The vector in the plane from the origin to point `(x, y)`

makes this angle with the positive X axis. The point of `atan2()`

is that the signs of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, `atan(1)`

and `atan2(1, 1)`

are both `pi/4`

, but `atan2(-1, -1)`

is `-3*pi/4`

.

###
#
`math.cos(x)`

Return the cosine of `x`

radians.

###
#
`math.sin(x)`

Return the sine of `x`

radians.

###
#
`math.tan(x)`

Return the tangent of `x`

radians.

###
#
`math.degrees(x)`

Convert angle `x`

from radians to degrees.

###
#
`math.radians(x)`

Convert angle `x`

from degrees to radians.

###
#
`math.modf(x)`

Return the fractional and integer parts of `x`

. Both results carry the sign of `x`

and are floats.

###
#
`math.factorial(x)`

Return `x`

factorial as an integer.