#
cmath
Mathematical functions for complex numbers.
https://docs.python.org/3/library/cmath.html
#
Source code
import math
class complex:
def __init__(self, real, imag=0):
self._real = float(real)
self._imag = float(imag)
@property
def real(self):
return self._real
@property
def imag(self):
return self._imag
def conjugate(self):
return complex(self.real, -self.imag)
def __repr__(self):
s = ['(', str(self.real)]
s.append('-' if self.imag < 0 else '+')
s.append(str(abs(self.imag)))
s.append('j)')
return ''.join(s)
def __eq__(self, other):
if type(other) is complex:
return self.real == other.real and self.imag == other.imag
if type(other) in (int, float):
return self.real == other and self.imag == 0
return NotImplemented
def __ne__(self, other):
res = self == other
if res is NotImplemented:
return res
return not res
def __add__(self, other):
if type(other) is complex:
return complex(self.real + other.real, self.imag + other.imag)
if type(other) in (int, float):
return complex(self.real + other, self.imag)
return NotImplemented
def __radd__(self, other):
return self.__add__(other)
def __sub__(self, other):
if type(other) is complex:
return complex(self.real - other.real, self.imag - other.imag)
if type(other) in (int, float):
return complex(self.real - other, self.imag)
return NotImplemented
def __rsub__(self, other):
if type(other) is complex:
return complex(other.real - self.real, other.imag - self.imag)
if type(other) in (int, float):
return complex(other - self.real, -self.imag)
return NotImplemented
def __mul__(self, other):
if type(other) is complex:
return complex(self.real * other.real - self.imag * other.imag,
self.real * other.imag + self.imag * other.real)
if type(other) in (int, float):
return complex(self.real * other, self.imag * other)
return NotImplemented
def __rmul__(self, other):
return self.__mul__(other)
def __truediv__(self, other):
if type(other) is complex:
denominator = other.real ** 2 + other.imag ** 2
real_part = (self.real * other.real + self.imag * other.imag) / denominator
imag_part = (self.imag * other.real - self.real * other.imag) / denominator
return complex(real_part, imag_part)
if type(other) in (int, float):
return complex(self.real / other, self.imag / other)
return NotImplemented
def __pow__(self, other: int | float):
if type(other) in (int, float):
return complex(self.__abs__() ** other * math.cos(other * phase(self)),
self.__abs__() ** other * math.sin(other * phase(self)))
return NotImplemented
def __abs__(self) -> float:
return math.sqrt(self.real ** 2 + self.imag ** 2)
def __neg__(self):
return complex(-self.real, -self.imag)
def __hash__(self):
return hash((self.real, self.imag))
# Conversions to and from polar coordinates
def phase(z: complex):
return math.atan2(z.imag, z.real)
def polar(z: complex):
return z.__abs__(), phase(z)
def rect(r: float, phi: float):
return r * math.cos(phi) + r * math.sin(phi) * 1j
# Power and logarithmic functions
def exp(z: complex):
return math.exp(z.real) * rect(1, z.imag)
def log(z: complex, base=2.718281828459045):
return math.log(z.__abs__(), base) + phase(z) * 1j
def log10(z: complex):
return log(z, 10)
def sqrt(z: complex):
return z ** 0.5
# Trigonometric functions
def acos(z: complex):
return -1j * log(z + sqrt(z * z - 1))
def asin(z: complex):
return -1j * log(1j * z + sqrt(1 - z * z))
def atan(z: complex):
return 1j / 2 * log((1 - 1j * z) / (1 + 1j * z))
def cos(z: complex):
return (exp(z) + exp(-z)) / 2
def sin(z: complex):
return (exp(z) - exp(-z)) / (2 * 1j)
def tan(z: complex):
return sin(z) / cos(z)
# Hyperbolic functions
def acosh(z: complex):
return log(z + sqrt(z * z - 1))
def asinh(z: complex):
return log(z + sqrt(z * z + 1))
def atanh(z: complex):
return 1 / 2 * log((1 + z) / (1 - z))
def cosh(z: complex):
return (exp(z) + exp(-z)) / 2
def sinh(z: complex):
return (exp(z) - exp(-z)) / 2
def tanh(z: complex):
return sinh(z) / cosh(z)
# Classification functions
def isfinite(z: complex):
return math.isfinite(z.real) and math.isfinite(z.imag)
def isinf(z: complex):
return math.isinf(z.real) or math.isinf(z.imag)
def isnan(z: complex):
return math.isnan(z.real) or math.isnan(z.imag)
def isclose(a: complex, b: complex):
return math.isclose(a.real, b.real) and math.isclose(a.imag, b.imag)
# Constants
pi = math.pi
e = math.e
tau = 2 * pi
inf = math.inf
infj = complex(0, inf)
nan = math.nan
nanj = complex(0, nan)